Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Med J Aust ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38699949

RESUMEN

INTRODUCTION: The main mission of the Australian and New Zealand Children's Haematology and Oncology Group (ANZCHOG) is to develop and facilitate local access to the world's leading evidence-based clinical trials for all paediatric cancers, including brain tumours, as soon as practically possible. Diffuse intrinsic pontine gliomas (DIPGs) - a subset of a larger group of tumours now termed diffuse midline glioma, H3K27-altered (DMG) - are paediatric brain cancers with less than 10% survival at two years. In the absence of any proven curative therapies, significant recent advancements have been made in pre-clinical and clinical research, leading many to seek integration of novel therapies early into standard practice. Despite these innovative therapeutic approaches, DIPG remains an incurable disease for which novel surgical, imaging, diagnostic, radiation and systemic therapy approaches are needed. MAIN RECOMMENDATIONS: All patients with DIPG should be discussed in multidisciplinary neuro-oncology meetings (including pathologists, neuroradiologists, radiation oncologists, neurosurgeons, medical oncologists) at diagnosis and at relapse or progression. Radiation therapy to the involved field remains the local and international standard of care treatment. Proton therapy does not yield a superior survival outcome compared with photon therapy and patients should undergo radiation therapy with the available modality (photon or proton) at their treatment centre. Patients may receive concurrent chemotherapy or radiation-sensitising agents as part of a clinical trial. Biopsy should be offered to facilitate consideration of experimental therapies and eligibility for clinical trial participation. After radiation therapy, each patient should be managed individually with either observation or considered for enrolment on a clinical trial, if eligible, after full discussion with the family. Re-irradiation can be considered for progressive disease. CHANGES IN MANAGEMENT AS A RESULT OF THE GUIDELINE: Every child diagnosed with DIPG should be offered enrolment on a clinical trial where available. Access to investigational drugs without biological rationale outside the clinical trial setting is not supported. In case of potentially actionable target identification with molecular profiling and absence of a suitable clinical trial, rational targeted therapies can be considered through compassionate access programs.

2.
J Clin Invest ; 134(6)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319732

RESUMEN

Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma; DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR/Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across patient derived models of DIPG, highlighting the therapeutic potential of the blood-brain barrier-penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human-equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance while maintaining compliance and therapeutic benefit, we combined paxalisib with the antihyperglycemic drug metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin, in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-Seq, identifying changes in myelination and tumor immune microenvironment crosstalk. Collectively, this study has identified what we believe to be a clinically relevant DIPG therapeutic combinational strategy.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Metformina , Humanos , Ratones , Animales , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Fosfatidilinositol 3-Quinasas/genética , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Neoplasias del Tronco Encefálico/genética , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Serina-Treonina Quinasas TOR/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Glucosa , Metformina/farmacología , Microambiente Tumoral
4.
Cardiooncology ; 9(1): 45, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062530

RESUMEN

BACKGROUND: Modern oncological therapies together with chemotherapy and radiotherapy have broadened the agents that can cause cardiac sequelae, which can manifest for pediatric oncology patients while on active treatment. Recommendations for high-risk patients who should be monitored in a pediatric cardio-oncology clinic have previously been developed by expert Delphi consensus by our group. In 2022 we opened our first multidisciplinary pediatric cardio-oncology clinic adhering to these recommendations in surveillance and management. OBJECTIVES: Our pediatric cardio-oncology clinic aimed to: (i) Document cardiovascular toxicities observed within a pediatric cardio-oncology clinic and. (ii) Evaluate the applicability of the Australian and New Zealand Pediatric Cardio-Oncology recommendations. METHODS: Monthly multidisciplinary cardio-oncology clinics were conducted in an Australian tertiary pediatric hospital. Structured standardised approaches to assessment were built into the electronic medical record (EMR). All patients underwent baseline echocardiogram and electrocardiogram assessment together with vital signs in conjunction with standard history and examination. RESULTS: Nineteen (54%) individuals had a documented cardiovascular toxicity or pre-existing risk factor prior to referral. The two most common cardiovascular toxicities documented during clinic review included Left Ventricular Dysfunction (LVD) and hypertension. Of note 3 (8.1%) patients had CTCAE grade III LVD. An additional 10 (27%) patients reviewed in clinic had CTCAE grade I hypertension. None of these patients had hypertension noted within their referral. Cascade testing for cardiac history was warranted in 2 (5.4%) of patients. CONCLUSIONS: Pediatric cardio-oncology clinics are likely beneficial to documenting previously unrecognised cardiotoxicity and relevant cardiac family histories, whilst providing an opportunity to address lifestyle risk factors.

6.
J Mol Diagn ; 25(10): 709-728, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37517472

RESUMEN

DNA methylation array profiling for classifying pediatric central nervous system (CNS) tumors is a valuable adjunct to histopathology. However, unbiased prospective and interlaboratory validation studies have been lacking. The AIM BRAIN diagnostic trial involving 11 pediatric cancer centers in Australia and New Zealand was designed to test the feasibility of routine clinical testing and ran in parallel with the Molecular Neuropathology 2.0 (MNP2.0) study at Deutsches Krebsforschungszentrum (German Cancer Research Center). CNS tumors from 269 pediatric patients were prospectively tested on Illumina EPIC arrays, including 104 cases co-enrolled on MNP2.0. Using MNP classifier versions 11b4 and 12.5, we report classifications with a probability score ≥0.90 in 176 of 265 (66.4%) and 213 of 269 (79.2%) cases, respectively. Significant diagnostic information was obtained in 130 of 176 (74%) for 11b4, and 12 of 174 (7%) classifications were discordant with histopathology. Cases prospectively co-enrolled on MNP2.0 gave concordant classifications (99%) and score thresholds (93%), demonstrating excellent test reproducibility and sensitivity. Overall, DNA methylation profiling is a robust single workflow technique with an acceptable diagnostic yield that is considerably enhanced by the extensive subgroup and copy number profile information generated by the platform. The platform has excellent test reproducibility and sensitivity and contributes significantly to CNS tumor diagnosis.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Metilación de ADN , Niño , Humanos , Australia , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/genética , Metilación de ADN/genética , Nueva Zelanda , Estudios Prospectivos , Reproducibilidad de los Resultados
8.
Neurooncol Adv ; 5(1): vdad057, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287693

RESUMEN

Background: ZFTA-RELA (formerly known as c11orf-RELA) fused supratentorial ependymoma (ZFTAfus ST-EPN) has been recognized as a novel entity in the 2016 WHO classification of CNS tumors and further defined in the recent 2021 edition. ZFTAfus ST-EPN was reported to portend poorer prognosis when compared to its counterpart, YAP1 ST-EPN in some previously published series. The aim of this study was to determine the treatment outcome of molecularly confirmed and conventionally treated ZFTAfus ST-EPN patients treated in multiple institutions. Methods: We conducted a retrospective analysis of all pediatric patients with molecularly confirmed ZFTAfus ST-EPN patients treated in multiple institutions in 5 different countries (Australia, Canada, Germany, Switzerland, and Czechia). Survival outcomes were analyzed and correlated with clinical characteristics and treatment approaches. Results: A total of 108 patients were collated from multiple institutions in 5 different countries across three continents. We found across the entire cohort that the 5- and 10-year PFS were 65% and 63%, respectively. The 5- and 10-year OS of this cohort of patients were 87% and 73%. The rates of gross total resection (GTR) were high with 84 out of 108 (77.8%) patients achieving GTR. The vast majority of patients also received post-operative radiotherapy, 98 out of 108 (90.7%). Chemotherapy did not appear to provide any survival benefit in our patient cohort. Conclusion: This is the largest study to date of contemporaneously treated molecularly confirmed ZFTAfus ST-EPN patients which identified markedly improved survival outcomes compared to previously published series. This study also re-emphasizes the importance of maximal surgical resection in achieving optimal outcomes in pediatric patients with supratentorial ependymoma.

9.
Neurooncol Adv ; 5(1): vdad024, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152812

RESUMEN

Background: Diffuse intrinsic pontine glioma (DIPG) and other diffuse midline gliomas (DMG) of the thalamus and spinal cord are rare but devastating high-grade glial tumors of childhood with no curative treatment. Despite aggressive treatment attempts the prognosis has remained poor. Chimeric antigen receptor (CAR) T cell therapy has been identified as a promising new approach in the treatment of DMG tumors; however, additional targets are urgently required given known tumor heterogeneity and the prospect of antigen escape of this cancer. Methods: Using cell surface mass spectrometry, we detected high HER2 cell surface protein across a panel of patient-derived DIPG cells, thereby identifying an existing CAR T cell therapy for use in DIPG. Primary human T cells were transduced to express a second-generation HER2 CAR and interrogated for efficacy against patient-derived DIPG cells. Results: HER2 CAR T cells demonstrated potent and antigen-specific cytotoxicity and cytokine secretion when co-cultured with patient-derived DIPG cells. Furthermore, HER2 CAR T cells provided a significant regression in intracranial DIPG xenograft tumors. Conclusions: HER2 CAR T cells are already in clinic development and are well tolerated in pediatric patients. Here we provide strong preclinical evidence for the inclusion of DIPG patients in future pediatric CNS tumor HER2 CAR T cell clinical trials.

10.
Cancer Res ; 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37145169

RESUMEN

Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are the most lethal of childhood cancers. Palliative radiotherapy is the only established treatment, with median patient survival of 9-11 months. ONC201 is a DRD2 antagonist and ClpP agonist that has shown preclinical and emerging clinical efficacy in DMG. However, further work is needed to identify the mechanisms of response of DIPGs to ONC201 treatment and to determine whether recurring genomic features influence response. Using a systems-biological approach, we showed that ONC201 elicits potent agonism of the mitochondrial protease ClpP to drive proteolysis of electron transport chain and tricarboxylic acid cycle proteins. DIPGs harboring PIK3CA-mutations showed increased sensitivity to ONC201, while those harboring TP53-mutations were more resistant. Metabolic adaptation and reduced sensitivity to ONC201 was promoted by redox-activated PI3K/Akt signaling, which could be counteracted using the brain penetrant PI3K/Akt inhibitor, paxalisib. Together, these discoveries coupled with the powerful anti-DIPG/DMG pharmacokinetic and pharmacodynamic properties of ONC201 and paxalisib have provided the rationale for the ongoing DIPG/DMG phase II combination clinical trial NCT05009992.

11.
Cancer Res ; : OF1-OF17, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37195023

RESUMEN

Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPG), are the most lethal of childhood cancers. Palliative radiotherapy is the only established treatment, with median patient survival of 9 to 11 months. ONC201 is a DRD2 antagonist and ClpP agonist that has shown preclinical and emerging clinical efficacy in DMG. However, further work is needed to identify the mechanisms of response of DIPGs to ONC201 treatment and to determine whether recurring genomic features influence response. Using a systems-biological approach, we showed that ONC201 elicits potent agonism of the mitochondrial protease ClpP to drive proteolysis of electron transport chain and tricarboxylic acid cycle proteins. DIPGs harboring PIK3CA mutations showed increased sensitivity to ONC201, whereas those harboring TP53 mutations were more resistant. Metabolic adaptation and reduced sensitivity to ONC201 was promoted by redox-activated PI3K/Akt signaling, which could be counteracted using the brain penetrant PI3K/Akt inhibitor, paxalisib. Together, these discoveries coupled with the powerful anti-DIPG/DMG pharmacokinetic and pharmacodynamic properties of ONC201 and paxalisib have provided the rationale for the ongoing DIPG/DMG phase II combination clinical trial NCT05009992. SIGNIFICANCE: PI3K/Akt signaling promotes metabolic adaptation to ONC201-mediated disruption of mitochondrial energy homeostasis in diffuse intrinsic pontine glioma, highlighting the utility of a combination treatment strategy using ONC201 and the PI3K/Akt inhibitor paxalisib.

12.
Front Oncol ; 13: 1154246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124503

RESUMEN

The mitogen-activated protein kinase (MAPK) pathway signaling pathway is one of the most commonly mutated pathways in human cancers. In particular, BRAF alterations result in constitutive activation of the rapidly accelerating fibrosarcoma-extracellular signal-regulated kinase-MAPK significant pathway, leading to cellular proliferation, survival, and dedifferentiation. The role of BRAF mutations in oncogenesis and tumorigenesis has spurred the development of targeted agents, which have been successful in treating many adult cancers. Despite advances in other cancer types, the morbidity and survival outcomes of patients with glioma have remained relatively stagnant. Recently, there has been recognition that MAPK dysregulation is almost universally present in paediatric and adult gliomas. These findings, accompanying broad molecular characterization of gliomas, has aided prognostication and offered opportunities for clinical trials testing targeted agents. The use of targeted therapies in this disease represents a paradigm shift, although the biochemical complexities has resulted in unexpected challenges in the development of effective BRAF inhibitors. Despite these challenges, there are promising data to support the use of BRAF inhibitors alone and in combination with MEK inhibitors for patients with both low-grade and high-grade glioma across age groups. Safety and efficacy data demonstrate that many of the toxicities of these targeted agents are tolerable while offering objective responses. Newer clinical trials will examine the use of these therapies in the upfront setting. Appropriate duration of therapy and durability of response remains unclear in the glioma patient cohort. Longitudinal efficacy and toxicity data are needed. Furthermore, access to these medications remains challenging outside of clinical trials in Australia and New Zealand. Compassionate access is limited, and advocacy for mechanism of action-based drug approval is ongoing.

14.
Mol Oncol ; 17(9): 1763-1783, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37057706

RESUMEN

Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor in adults. The standard treatment achieves a median overall survival for GBM patients of only 15 months. Hence, novel therapies based on an increased understanding of the mechanistic underpinnings of GBM are desperately needed. In this study, we show that elevated expression of 28S rRNA (cytosine-C(5))-methyltransferase NSUN5, which methylates cytosine 3782 of 28S rRNA in GBM cells, is strongly associated with the poor survival of GBM patients. Moreover, we demonstrate that overexpression of NSUN5 increases protein synthesis in GBM cells. NSUN5 knockdown decreased protein synthesis, cell proliferation, sphere formation, migration, and resistance to temozolomide in GBM cell lines. NSUN5 knockdown also decreased the number and size of GBM neurospheres in vitro. As a corollary, mice harboring U251 tumors wherein NSUN5 was knocked down survived longer than mice harboring control tumors. Taken together, our results suggest that NSUN5 plays a protumorigenic role in GBM by enabling the enhanced protein synthesis requisite for tumor progression. Accordingly, NSUN5 may be a hitherto unappreciated target for the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Ratones , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/patología , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN , ARN Ribosómico 28S , Temozolomida/farmacología , Temozolomida/uso terapéutico , Humanos
15.
Mol Ther Nucleic Acids ; 31: 466-481, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36865087

RESUMEN

The tumor suppressor p53 plays a critical role in cancer pathogenesis, and regulation of p53 expression is essential for maintaining normal cell growth. UBE4B is an E3/E4 ubiquitin ligase involved in a negative-feedback loop with p53. UBE4B is required for Hdm2-mediated p53 polyubiquitination and degradation. Thus, targeting the p53-UBE4B interactions is a promising anticancer strategy for cancer therapy. In this study, we confirm that while the UBE4B U box does not bind to p53, it is essential for the degradation of p53 and acts in a dominant-negative manner, thereby stabilizing p53. C-terminal UBE4B mutants lose their ability to degrade p53. Notably, we identified one SWIB/Hdm2 motif of UBE4B that is vital for p53 binding. Furthermore, the novel UBE4B peptide activates p53 functions, including p53-dependent transactivation and growth inhibition, by blocking the p53-UBE4B interactions. Our findings indicate that targeting the p53-UBE4B interaction presents a novel approach for p53 activation therapy in cancer.

16.
Cancers (Basel) ; 15(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36765655

RESUMEN

PURPOSE: To explore pediatric oncology referral practices, gather healthcare providers' perspectives of barriers to access and provision of rehabilitation service across Canada, and inform a framework for action to optimize rehabilitation care and inform future research. METHODS: A cross-sectional survey was conducted with Canadian healthcare professionals (HCPs) working in pediatric oncology. RESULTS: A total of 54 responses were received, and 34 corresponded to HCPs who refer children with cancer to rehabilitation services. Results suggest that approximately 25% of children are referred to rehabilitation services, primarily when the child presents with, or is at risk of, significant functional disability due to surgery. A primary barrier to service provision identified across HCPs included a lack of funding and resources. Medical professionals further identified a lack of specialized pediatric oncology rehabilitation services, whereas rehabilitation professionals identified the lack of pediatric oncology specific space and equipment. Identified themes from open-ended survey questions include the need for (1) dedicated funding and resources, (2) improved access, and (3) the need for specialized pediatric oncology rehabilitation services. CONCLUSION: Several barriers exist in the Canadian healthcare context that impact the delivery of rehabilitation services for children with cancer. We propose a framework for action to advance clinical care and guide future research.

17.
Front Neurosci ; 16: 843794, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35546872

RESUMEN

Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.

18.
Cell Death Dis ; 13(4): 397, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459267

RESUMEN

As a key component of the RNA-induced silencing complex (RISC), Argonaute2 (Ago2) exhibits a dual function regulatory role in tumor progression. However, the mechanistic basis of differential regulation remains elusive. p63 is a homolog of the tumor suppressor p53. p63 isoforms play a critical role in tumorigenesis and metastasis. Herein, we show that p63 isoforms physically interact with and stabilize Ago2. Expression of p63 isoforms increases the levels of Ago2 protein, while depletion of p63 isoforms by shRNA decreases Ago2 protein levels. p63 strongly guides Ago2 dual functions in vitro and in vivo. Ectopic expression of the miR-144/451 cluster increases p63 protein levels; TAp63 transactivates the miR-144/451 cluster, forming a positive feedback loop. Notably, miR-144 activates p63 by directly targeting Itch, an E3 ligase of p63. Ectopic expression of miR-144 induces apoptosis in H1299 cells. miR-144 enhances TAp63 tumor suppressor function and inhibits cell invasion. Our findings uncover a novel function of p63 linking the miRNA-144 cluster and the Ago2 pathway. FACTS AND QUESTIONS: Identification of Ago2 as a p63 target. Ago2 exhibits a dual function regulatory role in tumor progression; however, the molecular mechanism of Ago2 regulation remains unknown. p63 strongly guides Ago2 dual functions in vitro and in vivo. Unraveling a novel function of p63 links the miRNA-144 cluster and the Ago2 pathway.


Asunto(s)
MicroARNs , Neoplasias , Proteínas Argonautas , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/metabolismo , Isoformas de Proteínas/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Factores de Transcripción , Proteínas Supresoras de Tumor , Ubiquitina-Proteína Ligasas/metabolismo
20.
Med J Aust ; 216(6): 312-319, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35201615

RESUMEN

INTRODUCTION: The Australian Technical Advisory Group on Immunisation and New Zealand Ministry of Health recommend all children aged ≥ 5 years receive either of the two mRNA COVID-19 vaccines: Comirnaty (Pfizer), available in both Australia and New Zealand, or Spikevax (Moderna), available in Australia only. Both vaccines are efficacious and safe in the general population, including children. Children and adolescents undergoing treatment for cancer and immunosuppressive therapy for non-malignant haematological conditions are particularly vulnerable, with an increased risk of severe or fatal COVID-19. There remains a paucity of data regarding the immune response to COVID-19 vaccines in immunosuppressed paediatric populations, with data suggestive of reduced immunogenicity of the vaccine in immunocompromised adults. RECOMMENDATIONS: Considering the safety profile of mRNA COVID-19 vaccines and the increased risk of severe COVID-19 in immunocompromised children and adolescents, COVID-19 vaccination is strongly recommended for this at-risk population. We provide a number of recommendations regarding COVID-19 vaccination in this population where immunosuppressive, chemotherapeutic and/or targeted biological agents are used. These include the timing of vaccination in patients undergoing active treatment, management of specific situations where vaccination is contraindicated or recommended under special precautions, and additional vaccination recommendations for severely immunocompromised patients. Finally, we stress the importance of upcoming clinical trials to identify the safest and most efficacious vaccination regimen for this population. CHANGES IN MANAGEMENT AS A RESULT OF THIS STATEMENT: This consensus statement provides recommendations for COVID-19 vaccination in children and adolescents aged ≥ 5 years with cancer and immunocompromising non-malignant haematological conditions, based on evidence, national and international guidelines and expert opinion. ENDORSED BY: The Australian and New Zealand Children's Haematology/Oncology Group.


Asunto(s)
COVID-19 , Hematología , Neoplasias , Adolescente , Australia/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Niño , Preescolar , Humanos , Neoplasias/terapia , Nueva Zelanda/epidemiología , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...